Bayesian learning for neural networks: an algorithmic survey
نویسندگان
چکیده
Abstract The last decade witnessed a growing interest in Bayesian learning. Yet, the technicality of topic and multitude ingredients involved therein, besides complexity turning theory into practical implementations, limit use learning paradigm, preventing its widespread adoption across different fields applications. This self-contained survey engages introduces readers to principles algorithms Learning for Neural Networks. It provides an introduction from accessible, practical-algorithmic perspective. Upon providing general Networks, we discuss present both standard recent approaches inference, with emphasis on solutions relying Variational Inference Natural gradients. We also manifold optimization as state-of-the-art approach examine characteristic properties all discussed methods, provide pseudo-codes their implementation, paying attention aspects, such computation
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملLearning Gated Bayesian Networks for Algorithmic Trading
Abstract. Gated Bayesian networks (GBNs) are a recently introduced extension of Bayesian networks that aims to model dynamical systems consisting of several distinct phases. In this paper, we present an algorithm for semi-automatic learning of GBNs. We use the algorithm to learn GBNs that output buy and sell decisions for use in algorithmic trading systems. We show how using the learnt GBNs can...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملreinforcement learning in neural networks: a survey
in recent years, researches on reinforcement learning (rl) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. neural network reinforcement learning (nnrl) is among the most popular algorithms in the rl framework. the advantage of using neural networks enables the rl to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence Review
سال: 2023
ISSN: ['0269-2821', '1573-7462']
DOI: https://doi.org/10.1007/s10462-023-10443-1